HELP not HYPE: Being truly useful to blood banks

VUEPOINT posts and website top-ranking pages prove that delivering blood bank help is timeless and valuable

The Williams Labs web site was created with a single goal – provide a place where people involved in blood banking can find information to help them perform their jobs more easily and with better results.

We are delighted that blood bankers from around the world – some who are Safe-T-Vue users and some who are not – routinely visit williamlabs.com and read our VUEPOINT posts because we are providing relevant, useful and helpful information for blood banks.

AABB_Temperature_Standards_2016We’ve also been flattered to learn that blood bank inspectors point blood banks to our website as an easy source of information regarding transport and storage of blood products.

In this VUEPOINT, we share the links to these pages and posts as a quick guide to these informational resources. Maybe they are handy to bookmark for your daily blood bank operations – or perhaps in orienting a new employee? Whatever your reason, it’s here for you and your blood bank staff – with our continued focus on helping you do your best.

Top 5 Useful and Helpful Pages

1. AABB Temperature Standards for Blood Products: Storage and Transport
This table provides fast access to the newest 2016 AABB Reference Standard 5.1.8.A for storage and transport temperatures of blood components.

2. Simulated Blood Product RecipesSimulated_Blood_Products_Validation
We first published this VUEPOINT almost 4 years ago, and based on the web statistics, it continues to be a valuable resource for blood banks. Did you know that 10% glycerol in water is NOT “one size fits all?” You might want to read this one and learn more.

 

3. QA Documents
It doesn’t sound glamorous or intriguing, but the incredibly useful nature of having QA documents for the Safe-T-Vue products easily accessible 24/7/365 has proven to be a winner. No hype, just help.Safe-T-Vue_QA_Docs

4. Category: Storage of Blood Components
This page provides titles and excerpts of all the VUEPOINT posts in the category “Storage of Blood Components” that we’ve published over the years. Scroll down the page and you’ll quickly find information on IR Thermometers, Cooler Validation, Refrigerator Setpoints, Indicator Comparisons and more.

5. Tags: Blood Temperature
Similar to #4 “Storage of Blood Components” this page presents almost 5 years of VUEPOINT posts that have something to do with blood temperature – measuring, monitoring, and managing.

We are always looking to learn from you – about how we can be more helpful and genuinely useful by providing valuable information to blood bankers worldwide. If you have suggestions for VUEPOINT topics or questions you’d like for us to explore – and share – we would be delighted to hear from you.

Sincerely,

Jeff Gutkind

3 Things You Need to Know

About Blood Temperature Indicators

Do you trust a product to protect your blood supplies that may “auto activate?” Would you be discarding expensive blood products because of an unreliable indicator?

1. Accuracy Matters

Of the indicators on the market, one is clearly less accurate. “Indicator A” can reach endpoint at 9o, resulting in wasted blood – blood that may actually be in compliance.

2. Performance Varies Greatly

The fine print for a competing indicator clearly states that AFTER ACTIVATION, the temperature of the blood needs to be brough back down to its 8oC “Stop Temperature” to avoid premature indication.

This means that the indicator could prematurely indicate at a temperature as low as 8oC if the blood bank doesn’t take the extra step to ensure that the blood – after attaching an activated indicator – is cooled below this “stop temperature.”

3. Lower Price May Not Be Lowest Cost

Comparing indicator purchase price may make it seem like an easy choice.  however, the actual COST of an indicator that is:

  • poor performing
  • less accurate, or
  • unreliable

is dramatic in comparison to the cost of wasted blood products.

Knowing that, on average:

  • blood banks receive a significant amount of issued blood back
  • ONE unit of wasted blood may cost the blood bank $250
It only makes sense that a more reliable indicator that reaches endpoint at 9.6oC (and not as low as 8.0oC) is a more cost effective choice.

Handy Tip

Safe-T-Vue lot-by-lot QA documents are posted here on our website for easy customer access – and prove that Safe-T-Vue is manufactured to quality standards.

 

SURVEY: Temperature Indicators & Platelet Bacterial Contamination

“Sepsis from a bacterially contaminated platelet unit represents the most frequent infectious complication from any blood product today.”1

Would a temperature indicator help your blood bank improve quality control, patient outcomes and platelet discard rates?
Take the Survey: Click Here

Because platelets are stored at room temperature, their shelf life is limited to 5 days due to the risk for bacterial growth during storage. Bacterial contamination of platelets is a major concern because of the rich plasma environment at room temperature. All apheresis platelets are sampled and cultured for bacteria growth prior to issue. Platelets that have exceeded the AABB guideline temperature range (20 – 24°C) are at greater risk for elevated bacterial counts. When this happens, not only is the patient risk high, but there are also intense challenges on the blood bank to maintain adequate platelet supplies AND assure patient safety.

As a major manufacturer of temperature indicators for healthcare applications, we are interested to hear from you about the possible application of a temperature indicator for platelets (PLTs). For that reason, we’re conducting a survey.

Publications on Platelets

Just this past November, AABB published clinical guidelines on appropriate use of platelet transfusion in adult patients, developed by a panel of twenty-one experts (named in the article). These guidelines appear in the February 2015 issue of Annals of Internal Medicine. While the article provides six recommendations specific to platelets and transfusions, it states early in the article that:

“Sepsis from a bacterially contaminated platelet unit represents the most frequent infectious complication from any blood product today.”1

In a 2011 article in Transfusion, the author noted that “…outdating PLTs is a financial burden and a waste of a resource.”2

In response to this recent attention to platelets, we’ve considered whether an irreversible temperature indicator for platelets would help protect patients AND reduce the financial burden associated with outdated PLTs.

Please CLICK HERE to take our survey
and share your thoughts.

In this short survey, we’d like to learn more about your blood bank’s platelet inventory management – and to get your ideas on the possible value of a platelet temperature indicator.

After the survey closes, we’ll publish the responses so you can learn from each other. Survey participants will receive a pre-release of the results – and also be entered in the AABB drawing in Anaheim to win a FREE Val-A-Sure Cooler Validation Kit!

Thank you for taking time to participate in the survey. We look forward to your input, and are happy to provide a forum for sharing ideas in VUEPOINT.

Jeff Gutkind
jeffg@temptimecorp.com

For the entire AABB Guidelines: A Clinical Practice Guideline From the AABB.

Sources:
1 Stramer SL. Current risks of transfusion-transmitted agents: a review. Arch Pathol Lab Med. 2007; 131:702-7.

2 Fuller AK, Uglik KM, Braine HG, King KE. Transfusion. 2011 Jul;51(7):1469-76. doi: 10.1111/j.1537-2995.2010.03039.x. Epub 2011 Feb 8.

COMZ VUEPOINT (doc. 2371)

Cooler Validation: Comparison of “Manual” Thermometer vs. “Automated” Data Logger Methods

In our March 2012 survey of over 70 blood banks, many respondents generally described cooler validation as a “pain,” characterizing it as time-consuming, frustrating and even primitive.

Most blood banks revalidate their transport coolers annually. And although it is only once a year, there never seems to be a good time or resource-efficient way to do it.


Using multiple data loggers allows more accurate temperature mapping of the cooler interior.

The three key factors we hear repeated most often are:
1. Time Efficiency (technician’s time)
2. Data Accuracy
3. Simplifying Documentation

At the SCABB/CBBS meeting last month, we entertained compelling discussions with blood bankers who have switched from manual cooler validations with thermometers, to using data loggers (electronic temperature recorders). Some of them are using the Val-A-SureTM Cooler Validation Kit.

If you’ve ever considered switching to an automated validation process, we thought it might be helpful to share what we’ve learned from blood bankers across the country. In the following table (next page) we compare the traditional “manual” thermometer method to the “automated” data logger method – and capture how it has changed their validation experiences.

This graph displays temperature of the top bag vs. the bottom bag. The data is downloaded from data loggers and printed for permanent validation documentation, eliminating handwritten and transcribed data.

We’ll be giving away a Val-A-Sure Cooler Validation Kit at AABB 2015, so if you’re interested in a “free” chance to change your cooler validation method, be sure to stop by and see us!

Jeffrey Gutkind
jeffg@temptimecorp.com

P.S. For more on Transport and Storage Coolers, check out our Tips, Helpful Ideas and AABB Standards References on www.williamlabs.com.

COMZ VUEPOINT – Cooler Validation-Comparison of Manual Thermometer vs. Automated Data Logger Methods – web version (doc. 2341)

Reduce RBC and FFP Waste, Improve ROI

Learn more from this Blood Transport and Storage Initiative that resulted in significant ROI

by Jeff Gutkind, Business Development Manager

I recently read an article in the journal Transfusion1 in reference to reducing red blood cell (RBC) and plasma (FFP) waste.  The study showed significant reduction in RBC and FFP waste by using a new blood transport and storage system, and a significant return on their investment in the new system (estimated savings of $9000/month for their institution).

While the article doesn’t speak to temperature indicators, it does seem to validate that there is a trend toward cooler storage in the OR being considered “intraoperative storage,” which is significant.

For those of us sensitive to blood waste (and associated costs) due to time-temperature issues, this study has a wealth of valuable information and powerful messages:The article cites a national waste rate for hospital-issued blood products ranging from 0% to 6%, and a common reason for blood waste being inadequate intraoperative storage.2

  • The article describes how most of their blood waste was from either temperature or time (away from the blood bank) excursions, and that 70% of those losses came from blood product issued to the OR in coolers.
  • In the second paragraph they state that “AABB standards require red blood cell and plasma units to be maintained at a temperature of 1-10°C during transport and 1-6°C during intraoperative storage.
  • They go on to state (under Materials and Methods) that “holding product in the OR represents a storage condition“….. and “the storage (1-6°C), not the more lenient transport (1-10°C) temperature range needed to be maintained.”

Their previous procedure was to issue blood products to the OR in off-the-shelf commercial coolers that were validated to hold product at 1-10°C for 8 hours. They changed to a new, more expensive cooler that incorporated specialty phase change material that is validated to hold 1-6°C for 18 hours. As a result of the new system and strategy, they have improved their “storage” compliance to 1-6°C and reduced waste from 1.20% to 0.06%, which they calculate to save the $9,000 per MONTH.

The result of this study suggests that incorporating a new, longer duration blood shipping and storage container has allowed the OR to store blood for up to 18 hours at 1-6°C while meeting AABB’s more strict guidelines and has produced significant cost savings and notable return on investment 

It would be interesting to see the savings if they incorporated a Safe-T-Vue 6 indicator in this study.

REFERENCES:

1. Brown MJ, Button LM, Badjie KS, Guyer JM, Dhanaroker SR, Brach EJ, Johnson PM, Stubbs JR. Implementation of an intraoperative blood transport and storage initiative and its effect on reducing red blood cell and plasma waste, Transfusion 2014;54: 710-07.

2. Heltimiller ES, Hill RB, Marshall CE, Parsons FJ, Berkow LC, Barrasso CA, Zink EK, Ness PM. Blood wastage reduction using Lean Sigma methodology. Transufions 2010;50: 1887-96.

Tips for Better Blood Handling

Lessons you’ve taught us – and why they work!

Keeping blood cold can be a challenge. Here we present a few EASY handling procedures that can be readily incorporated into the day-to-day receiving and dispensing of blood in your blood bank – and make a significant difference.

You told us in our late 2013 survey what topics were of most interest to you and your colleagues in the blood bank. The most popular choices – by a large margin – were:

  1. Proper handling of blood products, and
  2. Use of temperature sensors in blood transport to the OR and ER/Trauma

Reflecting on the conversations and comments from visitors to our booth at the 2013 AABB in Denver, this survey validated what many of you have told us about keeping blood cold and proper handling.

In this VUEPOINT we are summarizing some of the handling procedures and ideas that blood bankers from around the world have shared with us over the years.

Tip #1

Handling blood bag by edges to prevent warming blood product Always handle blood bags by the ends where there is no blood that may be warmed by normal handling.

Why?

Holding a typical 300 – 400 cc blood bag in warm human hands for even 20-30 seconds may raise the core temperature by up to 2°C. The temperature rise is faster in smaller bags (< 350 cc) so extra care should be taken to handle small bags only by parts of the bag where no blood may be warmed by handling.

Tip #2

Always keep cold packs in the blood refrigerator. Place blood bags on a cold pack immediately when removing blood from the refrigerator – MAKE IT A HABIT!

Why?

A 350 cc blood bag that starts at 3.5 °C will reach 6.0°C in approximately 6 minutes and approximately 10°C in approximately 19 minutes depending on the temperature of its environment, and the temperature of any surface it comes into contact with (hands, lab bench, etc.).

The same bag on a cold pack, where both blood and cold pack are at 3.5°C and placed on a bench at 20°C will keep the blood below 6.0°C for approximately 14 minutes and below 10.0°C for approximately 36 minutes.

This is a no-brainer! USE COLD PACKS.

350 cc Blood Bag, temperature change with and without cold pack
3.5 °C 6.0°C 10°C
Without Cold Pack START 6 minutes 19 minutes
With Cold Pack START 14 minutes 36 minutes

Tip #3

Using an adhesive temperature indicator on the blood bag is one way to monitor – and be assured – that the blood temperature has not exceeded the upper compliance temperature of 6.0° C or 10.0°C.

Why?

Adhesive temperature indicator on blood product gives visual indication

Indicators give visual indication when the blood is approaching the 6°C or 10° C compliance temperature, and then confirm if the blood exceeded temperatures – even if the blood is “re-cooled” to a compliance temperature.

QUICK ACTIVATION TIP

Temperature indicators on blood bags in blood bank refrigerator

Some blood banks have adopted a procedure to apply the indicators to blood bags as they are put in blood bank refrigerator storage – then they can quickly activate the indicator immediately when the blood is dispensed, or activate it at the same time it is applied.

VALIDATION TIP – When validating a blood indicator be certain to use a temperature recorder that measures and indicates to within 1/10th of 1°C accuracy (0.1 °C).

 

SELECTION TIP – When choosing an indicator, be sure to pay attention to and ASK FOR proof that the product has been cleared through the 510(k) process by the FDA. This can be verified by receiving the product’s FDA 510(k) registration number from your supplier. To learn more about FDA 510(k) registration, read this VUEPOINT.

 

Do You Have Any Tips To Share?

  • Are there other procedures or ideas from your blood bank that we can share?
  • Do you have unanswered questions that we can help you get answers to?

Your peers, in hundreds of blood banks around the globe, are always eager to learn from each other. Please pass on your Tips for better blood handling, and we will be sure to post them in the next VUEPOINT.

Blood Temperature Compliance at 6°C … is it safe to re-inventory?


When blood products are issued from the blood bank in a packed cooler and are later returned to the blood bank, how do you know if the blood was maintained at the compliance temperature of 6°C? In this 90 second video, you’ll see how Safe-T-Vue® 6 from William Laboratories (www.williamlabs.com) can be used throughout the transport and temporary storage process to provide easy visual indication if the blood temperature exceeds 6°C.

Simulating Platelets for Validations

Guidance in using an average density to simulate platelets for validations

After reading our VUEPOINT post – “Simulated Blood Products: 10% Glycerol in water may NOT be “One Size Fits All” – that presented “recipes” for simulated blood products (Red Blood Cells, Whole Blood and Plasma) – one of our VUEPOINT readers recently  posted a comment on our website. The question was about platelets, asking for the water-glycerol mixture for simulating them, just like we had done for the other blood products. Great question and we’re glad you asked!

How do we calculate an accurate mixture based on varying platelet densities?

Because of the density range of platelets, if you were striving to be highly, highly accurate, you would need to know what group the platelets fall into. Various professional papers discuss high, low and other density groups. Here is a reference from the University of Virginia School of medicine that classifies platelets into three Density Classes, with an average density for each class.

Another platelet density analysis reported “…normal platelets layered onto Percoll formed a band extending from 1.0625 g/ml to 1.0925 g/ml, with a mean platelet density of 1.0775 g/ml:…”.1

In response to our VUEPOINT reader’s inquiry, we have modified our graph and recommended water-glycerol mixture (1.066, 26%) to include a formula for platelets. This graph plots the % Glycerol (y-axis) to Density / Specific Gravity (x-axis), which reflects density, for Plasma, Whole Blood, Platelets and RBCs.

Recommended “Recipes” for simulated blood products

Based on the data presented in this VUEPOINT, we recommend that you consider using the following mixtures for blood product simulation.

Stir for a few minutes to assure a homogeneous solution. Be sure to follow any precautions supplied by the glycerol manufacturer for handling pure glycerol.

Other Sources for Platelet Density Information

For those of you who are interested in digging a little deeper into platelet density, here is a link to another reference that reports blood density determination:
Blood. 1977 Jan;49(1):71-87. Heterogeneity of human whole blood platelet subpopulations. I. Relationship between buoyant density, cell volume, and ultrastructure. Corash L, Tan H, Gralnick HR.

Please Share Your Questions and Feedback

We always appreciate questions like these that give us an opportunity to do some research and share more valuable information, with the goal of making your job a little easier if we can. Please don’t hesitate to post a COMMENT to any of our VUEPOINT articles if you have something to share, or would like to us to “dig a little deeper” for our mutual learning.
info@williamlabs.com
1-800-767-7643

1 Platelet-Density Analysis and Intraplatelet Granule Content in Young Insulin Dependent Diabetics, A. Collier, H.H. K Watson, D.M. Matthews, L. Strain, C.A. Ludlam, and D.F. Clarke, Diabetes, Vol. 35, October 1986.