What is “stop temperature?”

Return to Refrigerator Challenge” generates new questions from blood banks

This was the most common question we received from blood bankers in an unprecedented response to our January 2017 VUEPOINT.  In that issue of VUEPOINT, we shared the results of a “Return to Refrigerator Challenge” – where a major university hospital conducted a test to compare two blood temperature indicators.  Their intention was to evaluate indicator performance when unused blood was returned to the blood bank.

Although this was the first time we discussed stop temperature in a VUEPOINT, it’s not the first time we’ve received questions about it from our blood bank contacts. To address those issues, we researched what stop temperature means for indicator manufacturers who use this specification. We found that stop temperature appears to relate to the chemical indication behavior.  This means that if the blood product temperature is below the stop temperature, the indicator does not change color.

How does a 10oC indicator with an 8oC stop temperature behave?

The 10oC indicator used in the challenge has a specified stop temperature of 8oC.  If the blood product begins to exceed the stop temperature (8oC), the 10oC indicator’s chemical indication material melts back to its liquid state. This melting reaction gives users a visual indication that the blood product is no longer in compliance. This type of indicator may signal that the blood product is out of compliance once it exceeds 8oC, even if it never reaches 10oC, as shown in this example.

What does this mean to blood banks using a stop temperature type indicator?

Now that we understand what stop temperature is, the question is what does the specification – and indicator performance – mean to blood banks?  Specifically, what happens if the blood product is hovering around the 8oC stop temperature for any period?

Tests shared by blood banks, combined with our studies, have shown that under a wide range of exposures and times – once the indicator exceeds its stop temperature of 8oC, the indicator may be irreversibly tripped.  In multiple tests, the blood product temperature was being internally monitored to confirm that it remained below the indication temperature of 10oC before being returned to the blood bank refrigerator.  After the blood bags were returned to the refrigerator for reissue, many indicators had tripped during the refrigeration period.

Comments and questions from blood banks based on findings

  • “Doesn’t this make it an 8oC indicator?”
  • “We have many bags that are returned to the blood bank at 8oC and they look OK. We put them in the refrigerator and they show overheated.  This is an 8oC indicator.  We are throwing out good blood.”
  • “This did not show up in the standard validation, and it never occurred to us to try this while performing the validation. After performing the ‘return to refrigerator challenge’ we found that the indicator just did not perform”.

We are grateful for comments and questions like these because they help fuel our blood indicator knowledge and testing.  Clearly, the “stop temperature” specification may be new to many blood banks and is something to be further explored.  Please share your experiences and observations so we can continue learning together.

IR Thermometers: Determining Blood Product Temperature on Return to Blood Bank

Learn as we explore common misconceptions about IR thermometers and surface temperature vs. core temperature

The following PathLabTalk post describes something we encounter repeatedly in blood banks – and illustrates several problematic misconceptions about determining blood product temperature on return to the blood bank. At the same time, this post demonstrates a reliable, good practice!

“Our transfusion service is looking for an infrared thermometer that we can use to determine the internal temperature of our donor units. We issue products in validated coolers to surgery, ED, and other locations and sometimes we receive the products back that have not been used. Currently, we attach a temperature indicator to the unit, but want something more accurate that is not difficult to operate, calibrate, etc….”1

First, we congratulate this PathLabTalk poster for reaching out to the blood bank community for ideas and support. She/he has realistic, everyday needs that many may identify with. In this VUEPOINT, we present some problems and misconceptions, along with this blood banker’s good practices, that are communicated in the post.

Problem #1
Infrared Thermometers (a.k.a. Infrared “Guns”) do not measure “internal temperature”

Infrared thermometers are used to measure surface temperature without contacting the product being measured. Most specifications for these devices state “non-contact surface temperature measurement.” They do not measure “core temperature” of any product, including blood. Infrared thermometers are used in many different applications ranging from food service, to residential heating/cooling, to industrial. Typically they are used for “hard to reach” areas where contact temperature measurement is difficult/impossible.

Problem #2
A one-time temperature reading of a returned blood product provides little assurance that the blood was kept at the correct storage or transport temperature over the entire time period that it was out of blood bank control.

No matter how well everyone is trained and how conscientious they are, we all know that once the blood product leaves the blood bank, anything can happen. For example, in the OR or ED there are many critical functions being performed at once, and often over long periods of time. Blood can be taken from the cooler and left on a table for hours – and then returned to the blood bank, having had time to “cool” to what may appear to be an acceptable temperature.

The precariousness of this situation is compounded when an IR thermometer is used to check SURFACE temperature when the product is returned.
• Perhaps the blood bag was placed on an OR table for 6 hours during a long procedure, but was placed back in the cooler just long enough for the SURFACE to cool to a seemingly “acceptable” temperature…?
• Is it safe to assume that the blood temperature never reached unsafe temperatures?

Problem #3
Accuracy of IR Thermometers is affected by how they are used – due to “Distance to Target” A.K.A. FOV (Field of View) or D/S Ratio (Distance to Spot)

Accuracy specifications for most IR thermometers range from +/- 1.0oC to +/- 2oC. Looking at a few models from major manufacturers, their D/S specifications are documented as: 1 meter, 1.5 meters and 2 meters – which might surprise blood bankers using IR thermometers. The distance between the device and the target (blood product) affects the reading accuracy – and also means that the dependability and repeatability of temperature readings is “user dependent” in how they use the IR thermometer from variable distances (you’ll read about this problem in the PathLabTalk post responses). If you’d like to learn more about this particular characteristic, Grainger (industrial and facilities maintenance equipment resource) has an excellent “Quick Tip” on IR thermometers.

Good Practice

Temperature indicators provide irreversible visual evidence if the blood product exceeds its specified temperature, even if the product is “re-cooled” prior to return to the blood bank.
Attaching an irreversible temperature indicator to the blood product, as done by the PathLabTalk poster, IS one way to know if the blood was maintained at correct storage/transport temperatures. When the blood product reaches the indication temperature (typically 6oC or 10oC), the indicator provides “irreversible” visual evidence of the temperature excursion – even if the blood product is “re-cooled” after being out of blood bank control.

This elicits a similar question that we raised regarding IR thermometers – do temperature indicators that adhere to the surface of the blood product provide indication of the surface temperature or core temperature?

Safe-T-Vue indicators (Temptime Corporation) are chemical indicators, and the algorithms that are used to formulate them are based on thousands of laboratory tests that incorporate the CORE blood product temperature. While the indicator may be applied to the surface, its color response is correlated to core temperature.

Why this all matters

Bacteria are very rarely transmitted during blood component transfusion, but if they are, they usually cause severe, life-threatening adverse reactions, with the mortality rate of 20-30%.2

Periodically, there are reports of incidents likely to have caused serious injury or death, that have been linked to bacterial sepsis from blood products that were dispensed for extremely long surgeries, and returned to the blood bank unused.3 Those very products could be returned to inventory after checking the temperature with an IR thermometer, and reissued to another patient. Unbeknownst to the blood bank, the blood products may have reached temperatures that allowed for contaminants to thrive. When that unit is then reissued and transfused to the next patient, the results can be catastrophic.

Kudos to the PathLabTalk poster for good practice

In summary, we understand that it’s unrealistic to assume that blood products will be handled outside of the blood bank with the same watchful eye and expertise that trained, focused blood bankers have. And there is little certainty of blood product maintenance at appropriate storage/transport temperatures, even when using a temperature sensing device to check the product on return to the blood bank.

The most sure way to know that the blood did not reach non-compliant temperatures – that could result in bacterial sepsis – is to use an irreversible temperature indicator that stays with the blood product during its entire time out of the blood bank – as the PathLabTalk post noted.

References
1. http://www.pathlabtalk.com/forum/index.php?/topic/6436-infrared-thermometer/

2. http://cdn.intechopen.com/pdfs-wm/27955.pdf

3.  http://www.jsonline.com/watchdog/watchdogreports/problems-at-hospital-lab-show-lax-regulation-hidden-mistakes-b99585186z1-330324081.html

Blood Banks: Get “Inspection-Ready” with these Tips and Resources

Avoid panic! 3 Tips to make your inspection a proactive, collaborative, and educational experience

While the purpose of a blood bank inspection is ultimately educational, does the mere mention of it invoke anxiety in your staff? We’d like to help put some of that to rest with solid resources and some sound advice.

In this VUEPOINT, we guide you to two journal articles that are educational about the “who, when and why” of lab inspections, giving practical advice and resource links.

We were also fortunate to speak with Jim Baldridge, MT (ASCP) SBB, who is the Manager of Blood Bank Pathology at Providence – Little Company of Mary Medical Center in Torrance, California. Jim has been involved in the business of blood banks for almost 35 years, has performed AABB assessments, and currently conducts CAP (College of American Pathologists) inspections. And, you’ll find that Jim’s real-life experience supports the recommendations provided in the two articles.

3 Things you can do to prepare and get the most from your inspection

Jim Baldridge’s suggestions mirrored some of those you’ll see in both articles – including “locate, review and complete the reference guide (or checklist) that the inspector will use.” Here are three tips from Jim:

Tip #1
“Prior to the inspection, go through the checklist and have everything located and notated for the inspector,” said Jim. “This will allow the inspector to get to exactly what they are looking for, and move on. Use the checklist like a script.”

He also noted that this method of preparation allows the lab to have a permanent checklist that you can “roll forward” to the next inspection. “When revisions to the checklist are published you can address those new requirements, but you’ve already laid the groundwork for your inspection by completing the bulk of the work.”

Tip #2
Start a folder and keep copies of questions asked and documents requested during the inspection. “As the inspection progresses, it’s helpful to make a list of any questions that are asked, and make yourself a copy of any records the inspector requests – and put them in a folder. At the end of the day, you can go through the folder and debrief yourself – and prepare for the next day.” He also noted that it’s a good time to make notes for future inspections – – and this takes the pressure off of you to trust your memory!

Tip #3 
Look at the inspection as a collaborative process and expect positive outcomes. “I’ve found that in most inspections I’ve learned things and gotten good ideas. I’ve been able to borrow procedures and forms from others, and incorporate them into my policies. This is particularly true with CAP inspections, since they are peer reviews,” he added. “Preparation respects the time of the inspector, and a positive, collaborative attitude can help you get the most from the experience.”

Helpful journal articles

They’re Here! How to Prepare Your Blood Bank for Inspection was published in the April 24, 2015 issue of LabMedicine1, and provides a wealth of information. It’s a valuable resource, with helpful links at the end. In the article you’ll find:
• Overview of Agencies that perform inspections – CMS, FDA, AABB and CAP
• Explanation of terms used in inspections
• Practical Advice from 3 individuals – a QA specialist, a blood bank manager and an assessor
Click here for PDF

Is it an inspection, audit or assessment?

Per the article, while the agencies use different terminology, these terms are often used interchangeably, as are the terms ‘checklist’ and ‘assessment tool.’ You’ll find explanations of all of these terms in the article.

“Is Your Lab Inspection Ready?”
This article appeared in Medical Laboratory Observer2, June 2013, and provides a comprehensive list of the various organizations, and includes detailed information about their purposes, resources and checklists (assessment tools), where applicable. (Please note that since this article was published in 2013, some links may be invalid).

 

SURVEY: Temperature Indicators & Platelet Bacterial Contamination

“Sepsis from a bacterially contaminated platelet unit represents the most frequent infectious complication from any blood product today.”1

Would a temperature indicator help your blood bank improve quality control, patient outcomes and platelet discard rates?
Take the Survey: Click Here

Because platelets are stored at room temperature, their shelf life is limited to 5 days due to the risk for bacterial growth during storage. Bacterial contamination of platelets is a major concern because of the rich plasma environment at room temperature. All apheresis platelets are sampled and cultured for bacteria growth prior to issue. Platelets that have exceeded the AABB guideline temperature range (20 – 24°C) are at greater risk for elevated bacterial counts. When this happens, not only is the patient risk high, but there are also intense challenges on the blood bank to maintain adequate platelet supplies AND assure patient safety.

As a major manufacturer of temperature indicators for healthcare applications, we are interested to hear from you about the possible application of a temperature indicator for platelets (PLTs). For that reason, we’re conducting a survey.

Publications on Platelets

Just this past November, AABB published clinical guidelines on appropriate use of platelet transfusion in adult patients, developed by a panel of twenty-one experts (named in the article). These guidelines appear in the February 2015 issue of Annals of Internal Medicine. While the article provides six recommendations specific to platelets and transfusions, it states early in the article that:

“Sepsis from a bacterially contaminated platelet unit represents the most frequent infectious complication from any blood product today.”1

In a 2011 article in Transfusion, the author noted that “…outdating PLTs is a financial burden and a waste of a resource.”2

In response to this recent attention to platelets, we’ve considered whether an irreversible temperature indicator for platelets would help protect patients AND reduce the financial burden associated with outdated PLTs.

Please CLICK HERE to take our survey
and share your thoughts.

In this short survey, we’d like to learn more about your blood bank’s platelet inventory management – and to get your ideas on the possible value of a platelet temperature indicator.

After the survey closes, we’ll publish the responses so you can learn from each other. Survey participants will receive a pre-release of the results – and also be entered in the AABB drawing in Anaheim to win a FREE Val-A-Sure Cooler Validation Kit!

Thank you for taking time to participate in the survey. We look forward to your input, and are happy to provide a forum for sharing ideas in VUEPOINT.

Jeff Gutkind
jeffg@temptimecorp.com

For the entire AABB Guidelines: A Clinical Practice Guideline From the AABB.

Sources:
1 Stramer SL. Current risks of transfusion-transmitted agents: a review. Arch Pathol Lab Med. 2007; 131:702-7.

2 Fuller AK, Uglik KM, Braine HG, King KE. Transfusion. 2011 Jul;51(7):1469-76. doi: 10.1111/j.1537-2995.2010.03039.x. Epub 2011 Feb 8.

COMZ VUEPOINT (doc. 2371)

Blood Bank Refrigerator Setpoints Matter

Learn about these important time/temperature correlations relative to your day-to-day blood bank operations.

Understanding the time pressures of busy blood banks, it would be fair to say that ANY time/temperature “advantages” – such as revisiting the refrigerator setpoint – might be worth consideration. Learn more in this VUEPOINT.

by Jeffrey Gutkind, Temptime

Over the past several months I’ve had the opportunity to visit some of the largest blood banks across the nation. In the course of talking with blood bankers about maintaining blood temperatures during storage, issue and transport, I observed a wide range of refrigeration setpoints, anywhere from 1.5oC to 4.7oC.

Reviewing my observations from these visits and reflecting on the AABB standard of 1.0oC to 6.0oC for storage, it brought me back to the “starting” temperature for blood when it’s removed from the refrigerator.

    • How does even a degree or two at a higher or lower storage temperature affect the blood temperature as it is dispensed and issued from the blood bank?
    • More importantly, how does the refrigerator setpoint affect how much TIME you have before the blood reaches 6oC?

To answer these questions, we asked Marielle Smith, Technical Service Scientist, to run a simple test in our lab.

How long does it take for refrigerated blood products to reach 6oC?

Blood Storage Temperature: 2°C vs. 4°C

The following table and graph show the time it takes for the core temperature of a refrigerated blood bag to warm to 6°C when removed from refrigerated conditions (2°C or 4°C) and placed on a counter-top at room temperature.1

The graph demonstrates that the lower the refrigerated storage temperature, the more time it takes for the blood bag to reach 6°C when warming at room temperature conditions. While these results are specific to the test method and setup used, they should be typical.

In terms of practical, day-to-day blood bank operations, what does this tell us?

Based on this test data, it suggests that blood bankers have over twice as much time to get blood issued and dispensed when the refrigerator setpoint is lower (2oC vs. 4oC). This represents a significant advantage for refrigerating blood at lower temperatures and longer times out of refrigeration before the blood goes out of specification.

Knowing that AABB guidelines state blood can be stored at 6oC for up to 42 days and transported between facilities below 10oC, and at the same time understanding the time pressures of busy blood banks, it would be fair to say that ANY time/temperature “advantages” such as revisiting the refrigerator setpoint might be worth consideration.

What do the blood refrigeration experts have to say?

After researching refrigerator setpoint specifications for a number of different vendors, we found that the factory setpoint is typically 4.0oC. Not being a refrigerator expert, I decided to reach out to Colleen Holtkamp Market Manager from Helmer® Scientific, to learn more. Colleen graciously provided these thorough answers to my questions, as well as thoughtful guidance for your consideration on setpoints, alarms and refrigerator specifications. (Colleen’s responses are in blue following the questions).

1. What is the typical factory setpoint temperature of your refrigerators when they go into the field? Are these setpoints easily changed, or does it have to be reset by the factory?

“The typical setpoint for Blood Bank Refrigerators is 4oC. Per AABB Standards, the acceptable temperature for storage of whole blood and most red cell components is 1oC to 6oC. Setting the temperature to 4ºC, close to the middle of the range, is standard practice for blood bank refrigeration.

It should be noted that the alarm setpoints are important, as well. AABB Standards state that alarms should be set to activate before blood components are exposed to unacceptable conditions. For example, since the lower limit for blood storage is 1oC, it makes sense to set the low alarm to 1.5oC (and since the upper limit is 6oC, a high alarm setting of 5.5oC is appropriate).

The ability to change the temperature setpoint depends on the manufacturer/brand of the refrigerator, as does the process for changing the alarm settings (instructions should be included in the refrigerator’s user manual).

Helmer Scientific Blood Bank Refrigerators enable the operating setpoint and alarm settings to be changed at the facility (they do not have to be reset by the factory). With temperature and alarm settings, it’s important to remember that while it should be reasonably convenient to modify them, it shouldn’t be so easy that they tend to be changed by mistake. A safeguard such as password protection for the refrigerator settings offers the best of both worlds – security and ease of use.”

2. Is there some type of statistic that you would use to say if the door is open for 3 minutes per hour; it will take XX minutes to get back down to the original setpoint?
As an example: If the refrigerator is set to 3.0oC and the door is open for 2 minutes, how long will it take for the refrigerator to get back down to the 3.0oC setpoint?

“There isn’t a standard method for measuring temperature recovery after a door opening. It can be impacted by variables such as ambient temperature and how much cold product is stored in the refrigerator at the time. What is important is that the unit has a heavy-duty, forced air refrigeration system and that the fan stops running while the door is open so that it does not blow out the cold air. In addition, the refrigeration system should be powerful enough to circulate the air inside the cabinet multiple times shortly after the door is closed, ensuring quick temperature recovery.

Another consideration is the importance of alarms. Having both a door open alarm and a high temperature alarm provides two layers of protection against temperature excursions due to door openings.”

3. What is the typical tolerance for blood bank refrigerators? (we found this information difficult to find in our online research).

“Blood Bank requires the tightest temperature uniformity of any cold storage application. The typical temperature uniformity specification for Blood Bank Refrigerators is +/-1oC. While not necessarily a regulatory requirement, many Blood Banks have written this specification into their internal protocols/SOPs. Therefore, it has become a community standard that drives performance expectations for Blood Bank Refrigerators.

Before a Blood Bank considers changing refrigerator setpoints from 4oC to 2oC, it is critical to think about the following information. If a blood refrigerator is set to 2oC, with uniformity of +/-1oC, the temperature inside the unit might reach the lower limit of the acceptable range (1oC). Also, if the low alarm is set to 1.5oC (which is advisable because AABB standards state that alarms should activate before blood is exposed to unacceptable conditions), it may be triggered by operation at 2oC. Helmer Scientific’s priority is to optimize the temperature of the blood bag while it is stored in our units. The setpoints and alarms are established to protect the blood while it is in the refrigerator.”

When it comes to blood bank refrigeration setpoints, what have we learned?

• The typical factory setpoint for blood bank refrigerators when delivered from the manufacturer is 4.0oC
• The ability to change the refrigerator setpoint at the blood bank varies by manufacturer
• Blood that is stored at 2oC takes over twice as long (approximate, based on our test) to reach 6oC at ambient, when compared to blood stored at 4oC
• Temperature recovery of refrigerators is affected by a number of variables (door opening, amount of stored cold product, ambient operating temperature)
• Low and high alarms, as well as open door alarms, are important and recommended by the manufacturers

If you have any recommendations, experiences, questions or ideas relative to refrigerator storage temperatures and your blood bank, we’d love to hear from you. Please POST A COMMENT or email us.

Jeffrey Gutkind
jeffg@temptimecorp.com

1Test Details
At each storage temperature, a total of six (6) simulated blood bags were tested. Each 600mL PVC blood bag (Charter Medical) was filled with 350mL of a mixture of 10% glycerol and 90% water, to simulate red blood cell volume. The bags were removed from refrigerated storage (at 2°C and 4°C) and then placed lying flat on a counter-top at room temperature (at approximately 21°C with 30% R.H). The temperature was measured by placing a calibrated temperature-sensing probe in the center of the simulated blood mixture inside the bag and the temperature was monitored using a calibrated Oakton Thermistor Thermometer. Temperature readings were recorded at 1 minute intervals. The data represents the time needed for the simulated blood mixture (10% glycerol with 90% water) to warm to 6°C.

All trademarks are the property of their respective owners.

Are all temperature indicators created equal?

When it comes to cost and performance, how do you choose?

by Jeffrey Gutkind

In today’s cost-conscious healthcare environment, our immediate reaction when making a buying decision is to minimize purchase cost.   The temperature indicators currently on the market have different costs.  And there are questions you may be asking:

  • is the “cheapest” purchase price going to save the blood bank money overall?
  • are all indicators equal in terms of performance?
  • how do you know which indicator to choose?

To answer these questions, let’s take a step back and question WHY we even use temperature indicators.

Temperature indicators for blood products were originally designed to provide assurance that blood product temperatures had not exceeded AABB temperature guidelines when the blood is out of the blood bank’s control. The temperature indicator provides proof that the blood product has been maintained at proper temperature while out of the blood bank control.

Numerous visitors to our AABB booth a few weeks ago stated that 40-50% of the blood issued from their blood banks is not used. To further illustrate the challenge, a journal article recently published in Transfusion (shared in our August 2014 VUEPOINT), described a study by a blood bank that stated how most of their blood waste was from either temperature or time (away from the blood bank) excursions, and that 70% of those losses came from blood products issued to the OR in coolers.  Temperature indicators are used by blood banks worldwide for exactly this reason – to provide assurance that the blood products at no time exceeded temperature thresholds, to help maintain blood product quality and to minimize blood waste.

So, other than cost, what matters when choosing an indicator?

Let’s circle back to our initial questions of the temperature indicator cost and the temperature indicator performance.  Since the job of a temperature indicator is to provide temperature information back to the blood bank, the indicator’s temperature ACCURACY (also referred to as “tolerance”) is critical.

As an example, of the three most popular 10o C temperature indicators on the market today, each publishes a different accuracy specification:

  • Safe-T-Vue 10  +/- 0.4 o C
  • Indicator A +/- 0.5 o C
  • Indicator B +/- 1.0 o C

How does indicator accuracy influence blood product waste?

In this illustration, you can see that a 10oC indicator with an accuracy of  +/- 1.0 may actually “trip” at 9 o C, thus falsely indicating that the temperature of the blood is out of specification.  And, as we all know, the cost of wasted blood itself far exceeds the purchase price of an indicator – and minimizing blood waste (not indicator cost) is the primary objective behind using a temperature indicator.

Using an average cost of $250.00 for a single wasted blood unit, it’s easy to calculate the potential savings of using a more accurate temperature indicator.   The cost difference in temperature indicators is minimal in comparison to the cost of one wasted unit of blood.

When comparing temperature indicators to make a buying decision, be sure to make ACCURACY comparison a key factor in your selection process.  Safe-T-Vue indicators are available in 6°C and 10°C temperature indications, both accurate within +/-0.4°C.  *

As always, we welcome your comments and feedback on the ideas presented in this VUEPOINT.

Sincerely,

Jeffrey Gutkind
jeffg@temptimecorp.com

* Refer to AABB standards for blood banks and transfusion services, 21 CFR 640.2, 21 CFR 640.4, and 21 CFR 600.15.

Reduce RBC and FFP Waste, Improve ROI

Learn more from this Blood Transport and Storage Initiative that resulted in significant ROI

by Jeff Gutkind, Business Development Manager

I recently read an article in the journal Transfusion1 in reference to reducing red blood cell (RBC) and plasma (FFP) waste.  The study showed significant reduction in RBC and FFP waste by using a new blood transport and storage system, and a significant return on their investment in the new system (estimated savings of $9000/month for their institution).

While the article doesn’t speak to temperature indicators, it does seem to validate that there is a trend toward cooler storage in the OR being considered “intraoperative storage,” which is significant.

For those of us sensitive to blood waste (and associated costs) due to time-temperature issues, this study has a wealth of valuable information and powerful messages:The article cites a national waste rate for hospital-issued blood products ranging from 0% to 6%, and a common reason for blood waste being inadequate intraoperative storage.2

  • The article describes how most of their blood waste was from either temperature or time (away from the blood bank) excursions, and that 70% of those losses came from blood product issued to the OR in coolers.
  • In the second paragraph they state that “AABB standards require red blood cell and plasma units to be maintained at a temperature of 1-10°C during transport and 1-6°C during intraoperative storage.
  • They go on to state (under Materials and Methods) that “holding product in the OR represents a storage condition“….. and “the storage (1-6°C), not the more lenient transport (1-10°C) temperature range needed to be maintained.”

Their previous procedure was to issue blood products to the OR in off-the-shelf commercial coolers that were validated to hold product at 1-10°C for 8 hours. They changed to a new, more expensive cooler that incorporated specialty phase change material that is validated to hold 1-6°C for 18 hours. As a result of the new system and strategy, they have improved their “storage” compliance to 1-6°C and reduced waste from 1.20% to 0.06%, which they calculate to save the $9,000 per MONTH.

The result of this study suggests that incorporating a new, longer duration blood shipping and storage container has allowed the OR to store blood for up to 18 hours at 1-6°C while meeting AABB’s more strict guidelines and has produced significant cost savings and notable return on investment 

It would be interesting to see the savings if they incorporated a Safe-T-Vue 6 indicator in this study.

REFERENCES:

1. Brown MJ, Button LM, Badjie KS, Guyer JM, Dhanaroker SR, Brach EJ, Johnson PM, Stubbs JR. Implementation of an intraoperative blood transport and storage initiative and its effect on reducing red blood cell and plasma waste, Transfusion 2014;54: 710-07.

2. Heltimiller ES, Hill RB, Marshall CE, Parsons FJ, Berkow LC, Barrasso CA, Zink EK, Ness PM. Blood wastage reduction using Lean Sigma methodology. Transufions 2010;50: 1887-96.

Tips for Better Blood Handling

Lessons you’ve taught us – and why they work!

Keeping blood cold can be a challenge. Here we present a few EASY handling procedures that can be readily incorporated into the day-to-day receiving and dispensing of blood in your blood bank – and make a significant difference.

You told us in our late 2013 survey what topics were of most interest to you and your colleagues in the blood bank. The most popular choices – by a large margin – were:

  1. Proper handling of blood products, and
  2. Use of temperature sensors in blood transport to the OR and ER/Trauma

Reflecting on the conversations and comments from visitors to our booth at the 2013 AABB in Denver, this survey validated what many of you have told us about keeping blood cold and proper handling.

In this VUEPOINT we are summarizing some of the handling procedures and ideas that blood bankers from around the world have shared with us over the years.

Tip #1

Handling blood bag by edges to prevent warming blood product Always handle blood bags by the ends where there is no blood that may be warmed by normal handling.

Why?

Holding a typical 300 – 400 cc blood bag in warm human hands for even 20-30 seconds may raise the core temperature by up to 2°C. The temperature rise is faster in smaller bags (< 350 cc) so extra care should be taken to handle small bags only by parts of the bag where no blood may be warmed by handling.

Tip #2

Always keep cold packs in the blood refrigerator. Place blood bags on a cold pack immediately when removing blood from the refrigerator – MAKE IT A HABIT!

Why?

A 350 cc blood bag that starts at 3.5 °C will reach 6.0°C in approximately 6 minutes and approximately 10°C in approximately 19 minutes depending on the temperature of its environment, and the temperature of any surface it comes into contact with (hands, lab bench, etc.).

The same bag on a cold pack, where both blood and cold pack are at 3.5°C and placed on a bench at 20°C will keep the blood below 6.0°C for approximately 14 minutes and below 10.0°C for approximately 36 minutes.

This is a no-brainer! USE COLD PACKS.

350 cc Blood Bag, temperature change with and without cold pack
3.5 °C 6.0°C 10°C
Without Cold Pack START 6 minutes 19 minutes
With Cold Pack START 14 minutes 36 minutes

Tip #3

Using an adhesive temperature indicator on the blood bag is one way to monitor – and be assured – that the blood temperature has not exceeded the upper compliance temperature of 6.0° C or 10.0°C.

Why?

Adhesive temperature indicator on blood product gives visual indication

Indicators give visual indication when the blood is approaching the 6°C or 10° C compliance temperature, and then confirm if the blood exceeded temperatures – even if the blood is “re-cooled” to a compliance temperature.

QUICK ACTIVATION TIP

Temperature indicators on blood bags in blood bank refrigerator

Some blood banks have adopted a procedure to apply the indicators to blood bags as they are put in blood bank refrigerator storage – then they can quickly activate the indicator immediately when the blood is dispensed, or activate it at the same time it is applied.

VALIDATION TIP – When validating a blood indicator be certain to use a temperature recorder that measures and indicates to within 1/10th of 1°C accuracy (0.1 °C).

 

SELECTION TIP – When choosing an indicator, be sure to pay attention to and ASK FOR proof that the product has been cleared through the 510(k) process by the FDA. This can be verified by receiving the product’s FDA 510(k) registration number from your supplier. To learn more about FDA 510(k) registration, read this VUEPOINT.

 

Do You Have Any Tips To Share?

  • Are there other procedures or ideas from your blood bank that we can share?
  • Do you have unanswered questions that we can help you get answers to?

Your peers, in hundreds of blood banks around the globe, are always eager to learn from each other. Please pass on your Tips for better blood handling, and we will be sure to post them in the next VUEPOINT.

When should I use a probe for temperature validations?

Here are a few guidelines for validation with or without a probe, based on what you told us

With our daily giveaway contest of a Val-A-Sure Cooler Validation Kit at AABB, we had the opportunity to talk with many of you about the validation procedures in your blood banks. Hands down, the most frequently asked question was “when do I use temperature recorders with external temperature probes – and when should I use temperature recorders with built-in sensors?”  Our Advantage Kit is configured with both types, since our research showed us that it’s done both ways for a number of reasons.

When we conducted product development beta tests and interviews with your peers, we learned a lot.  Here are a few guidelines for validation with or without a probe, based on what you told us.

Using Built-In Sensor Temperature Recorders

  1. When temperature among, around or between the bags in the cooler are to be recorded
  2. When several points within the cooler need to be recorded
  3. Where the compactness of the built-in sensor makes it easier to fit into the cooler/space
  4. In a larger cooler with six or more bags and numerous areas within the cooler need to be recorded, such as near top, near bottom, sides and ends
  5. General monitoring of all sizes of refrigerators, freezers, and ovens

Using Temperature Recorders with Probes

  1. When core temperature of blood bags is to be recorded
  2. For larger coolers where specific, more pin-point locations need to be temperature-monitored
  3. General monitoring of all sizes of refrigerators, freezers, and ovens where the probe may or may not be in a liquid

The Val-A-Sure Advantage Kit is supplied with 2 TRIX-8 Recorders (built-in sensors) and 2 TREX-8 Recorders with Bag-Sealer Probes. For those of you who prefer different recorder configurations, the Custom Kit allows you to select exactly the type and quantity of temperature recorders that will work best for your needs.

The temperature recorders have a range of +85 to -40°C, and we’re learning that some labs are using them for validations beyond transport coolers.  Every recorder is supplied with calibration document identifying instruments used for calibration and their traceability to a NIST standard.

If you have any other guidelines or suggestions to share, please feel free to Comment on this post (below) and we’ll be sure to pass it on to your peers!

And don’t forget, we have validation procedure videos here on the William Labs website.

Simulating Platelets for Validations

Guidance in using an average density to simulate platelets for validations

After reading our VUEPOINT post – “Simulated Blood Products: 10% Glycerol in water may NOT be “One Size Fits All” – that presented “recipes” for simulated blood products (Red Blood Cells, Whole Blood and Plasma) – one of our VUEPOINT readers recently  posted a comment on our website. The question was about platelets, asking for the water-glycerol mixture for simulating them, just like we had done for the other blood products. Great question and we’re glad you asked!

How do we calculate an accurate mixture based on varying platelet densities?

Because of the density range of platelets, if you were striving to be highly, highly accurate, you would need to know what group the platelets fall into. Various professional papers discuss high, low and other density groups. Here is a reference from the University of Virginia School of medicine that classifies platelets into three Density Classes, with an average density for each class.

Another platelet density analysis reported “…normal platelets layered onto Percoll formed a band extending from 1.0625 g/ml to 1.0925 g/ml, with a mean platelet density of 1.0775 g/ml:…”.1

In response to our VUEPOINT reader’s inquiry, we have modified our graph and recommended water-glycerol mixture (1.066, 26%) to include a formula for platelets. This graph plots the % Glycerol (y-axis) to Density / Specific Gravity (x-axis), which reflects density, for Plasma, Whole Blood, Platelets and RBCs.

Recommended “Recipes” for simulated blood products

Based on the data presented in this VUEPOINT, we recommend that you consider using the following mixtures for blood product simulation.

Stir for a few minutes to assure a homogeneous solution. Be sure to follow any precautions supplied by the glycerol manufacturer for handling pure glycerol.

Other Sources for Platelet Density Information

For those of you who are interested in digging a little deeper into platelet density, here is a link to another reference that reports blood density determination:
Blood. 1977 Jan;49(1):71-87. Heterogeneity of human whole blood platelet subpopulations. I. Relationship between buoyant density, cell volume, and ultrastructure. Corash L, Tan H, Gralnick HR.

Please Share Your Questions and Feedback

We always appreciate questions like these that give us an opportunity to do some research and share more valuable information, with the goal of making your job a little easier if we can. Please don’t hesitate to post a COMMENT to any of our VUEPOINT articles if you have something to share, or would like to us to “dig a little deeper” for our mutual learning.
info@williamlabs.com
1-800-767-7643

1 Platelet-Density Analysis and Intraplatelet Granule Content in Young Insulin Dependent Diabetics, A. Collier, H.H. K Watson, D.M. Matthews, L. Strain, C.A. Ludlam, and D.F. Clarke, Diabetes, Vol. 35, October 1986.